If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-16x-236=0
a = 4; b = -16; c = -236;
Δ = b2-4ac
Δ = -162-4·4·(-236)
Δ = 4032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4032}=\sqrt{576*7}=\sqrt{576}*\sqrt{7}=24\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-24\sqrt{7}}{2*4}=\frac{16-24\sqrt{7}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+24\sqrt{7}}{2*4}=\frac{16+24\sqrt{7}}{8} $
| -3=-4n+5 | | 3x+2=x+4(x+2) | | M+5m+3=15 | | 75-5x=15+10x | | -7+10+3g=-9-4g+29 | | 9(z-12)=70 | | b-21=38 | | -11p—16p-3=17 | | 4-x/2=2 | | 2x+5+3x-22=180 | | H(t)=-16t2+32t+200 | | 1.2x+1/5x=1/6x-1/6 | | 2/3v=1200 | | 2=n+1/5 | | -3(x-3)+5=5(2x-5) | | w-51=41 | | 5q+8=18 | | 7s-0.72=-1.53+6.9s | | 10(x+5)=300 | | 12x+7+6x-7=90 | | -7m+3m=-12 | | x/5+31=27 | | 7.20d=7 | | X+x-2x+10=20-5 | | x/5+31=21 | | -6+2u=18 | | c+62=83 | | 44=-4+3a | | 14x+32=20x-10 | | 20s+-15s+-14=-19 | | 9^3x-5=27^x+2 | | 14x+32+20x-10=180 |